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ABSTRACT

Furrow irrigation systems have a greater application capacity, are
less costly, and use less energy than sprinkler systems but furrow
irrigation produces greater runoff, erosion, and deep percolation
losses. Phosphorus (P) and nitrogen (N) losses are associated with
runoff sediment, and can be minimized by eliminating irrigation-
induced erosion. Excessive leaching of inorganic and organic sol-
utes commonly occurs at the inflow region of furrow irrigated
fields where infiltration opportunity times are longer. In one con-
servation practice, a high molecular weight, anionic polyacryla-
mide (PAM) is applied to advancing furrow stream flows at a con-
centration of 10 mg L. Because PAM stabilizes furrow soil and
flocculates suspended sediment, we hypothesized that this treat-
ment would reduce runoff losses of sediment, molybdate reactive
P (MRP), total P, NO 3-N, and chemical oxygen demand (COD).
Polyacrylamide treatment may increase furrow infiltration in some
soils. However, we hypothesized that because it permits higher ini-
tial inflows, PAM would not increase NO 3-N or Cl leaching rela-
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tive to conventional, constant inflow irrigation. To test the first hy-
pothesis, all treatments had the same inflow regime. For hypothesis
two, control inflows were a constant 15 L min - I ; PAM treated in-
flows were cut back from 45 to 15 L min - I after furrow advance.
Irrigation runoff and percolation waters were sampled and ana-
lyzed. Polyacrylamide increased infiltration and decreased runoff,
particularly early in the irrigations. Mean cumulative runoff sedi-
ment loss over 12 h was 11.86 kg for each control furrow vs
1.15 kg for PAM-treated furrows. The PAM reduced 12-h cumu-
lative sediment losses in runoff by 90%, MRP by 87%, total P by
92%, and COD by 85%, relative to control furrows. Polyacryla-
mide had no field-wide, season-long effect on cumulative amounts
of water, NO3-N or Cl leached. The PAM-technology effectively
prevented soil nutrient losses, increased nutrient-use efficiency,
and decreased N and P loads in irrigation return flows and receiv-
ing surface waters.

INTRODUCTION

Irrigated agriculture stabilizes world food and fiber production by increas-
ing yields relative to rainfed agriculture and reducing risks associated with crop
production (Bucks et al., 1990). Mineralized or applied nutrients must remain in
the root zone to be effectively utilized by plants. Soluble nutrients displaced from
the root zone by lateral and downward moving water can enter groundwater. Nu-
trients dissolved or desorbed from surface soil particles and those that remain
attached to soil can enter the furrow stream and be transported via irrigation return
flows to surface waters. Public concern over irrigation impacts on surface and
groundwater quality recently has focused on sediments, nutrients, dissolved salts,
and toxic organic compounds (Bucks et al., 1990).

Runoff and drainage losses from furrow irrigation are greater than from
other surface methods and sprinkler irrigation. Compared to level basin or sprin-
kler irrigation, furrow irrigation produces a less uniform water application. Op-
portunity time for infiltration is longer in furrow soils near the inflow ends, hence
these soils receive more water and experience a greater leaching potential than
furrow soils near outflow ends (Childs et al., 1993). Channeled concentrated flow
in furrows is erosive (Koluvek et al., 1993) but furrow runoff is tolerated in order
to improve water application uniformity (Bishop et al., 1967). Compared to level
basin or sprinkler irrigation, furrow irrigation produces a greater displacement or
removal of soil and nutrients from the plant locale, and increased transport of
sediment and nutrients to surface waters in return flow. However, owing to the
lower installation and energy costs, high application capacity, and reduced patho-
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gen ittlestation associated with Darrow irrigation (Bishop et al., 1%7), it is com-
monly used in the U.S. and other nations.

Furrow irrigated soils in the northwestern U.S. are highly erosive (Berg and
Carter, 1980). They have low organic matter content and exhibit mineral charac-
teristics which tend to inhibit aggregate stability, especially under the rapid wet-
ting and shear forces present in irrigation furrow streams (Kemper et al., 1985).
Thirty to sixty percent of the water applied leaves furrow irrigated fields as runoff
(Lentz et al., 1992). Irrigation runoff has negatively impacted surface streams in
southern Idaho through contributions of sediment, nutrient, and pesticides
(IDHW-DEQ, 1994).

Nutrient Fluxes into Irrigation Runoff and Drainage Waters

Furrow irrigation moves soluble or particulate organic matter, N, and P
from soil to drainage and runoff, which increase nutrient loading in surface waters
(Carter et al., 1971; Fitzsimmons et al., 1972; Mackenzie and Viets, 1974; Heath-
waite and Johnes, 1996). Subsurface drainage losses of nitrogen under irrigation
tracts in southern Idaho are significant, although some of this nitrogen may origi-
nate from nonagricultural sources, such as residential septic systems (Carter et al.,
1971). Nitrate-N is the main form of N lost in drainage water (Carter et al., 1971;
Fitzsimmons et al., 1972), although organic-N losses may be an important com-
ponent (Mackenzie and Viets, 1974). Nitrate-, NH,- and organic-N can be dis-
solved or entrained in furrow runoff (Fitzsimmons et al., 1972). Large increases
in runoff inorganic-N concentrations occur when fertilizers are applied to fields in
irrigation water, but not all high N-loss events are associated with such operations
(Fitzsimmons et al., 1972).

Carter et al. (1971, 1974) reported that south-central Idaho surface irrigated
tracts were a net sink for total P and ortho-P loads entering the tracts in irrigation
source water. Irrigation runoff had higher P concentrations than source water but
return flow volumes were a small fraction (14%) of the total source water volume
diverted from the Snake River, and P concentrations in the groundwater-derived
return flow contributions (13% of tract supply flow volume) were lower than that
of the source water. Carter concluded that ortho-P was being removed from irri-
gation water as it drained through, and reacted with, the calcareous soils. In con-
trast, Fitzsimmons et al. (1972) reported that groundwater ortho-P and total P
concentrations increased relative to source water in a southwestern Idaho irrigated
tract. Carter sampled groundwater discharged from drainage tunnels cut into ba-
salt bedrock in addition to tile drains, whereas, Fitzsimmons collected only tile
drain water.

Nutrient concentrations in irrigation runoff occur in dissolved form, are as-
sociated with soil particles, or occur as organic particulates and colloids. Total P
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and organic-N forms are largely associated with transported sediment and organic
particles or colloids in furrow runoff (Carter et al., 1974; Carter and Bondurant,
1976). Furrow erosion and transport processes and runoff sediment load substan-
tially determine the concentrations of these nutrient components in runoff (Carter
et al., 1974; Brown, 1985; Bjorneberg et al., 1999). Clay and organic matter ad-
sorb more P than other soil materials. The stream sediment clay : soil ratio, also
called the enrichment ratio, and the total sediment load largely determine the total
Pin runoff (Carter et al., 1974). The P enrichment ratio increases as the proportion
of clay and organic matter in the sediment load increases, and declines as sediment
increases, owing to the decrease in the proportion of fine to coarse particles in
sediments produced from escalating erosion regimes (Logan, 1982).

Dissolved nutrient concentrations, ortho-P, NO 3-N and NH4-N in furrow
runoff and subsurface drainage water result from the reaction of water with the
soil surface and decaying crop residues, including dispersed and detached parti-
cles that become suspended in the flow (Logan, 1982). Water soluble nutrients
dissolve in the water and desorb (eg. ortho-P, NH 4-N) from soil surfaces and dif-
fusion/advection processes move dissolved materials from soil/sediment pores
into the furrow stream or drainage flow (Logan, 1982). In furrows, the quantity of
nutrient ions made available via this process decreases with increasing time of
exposure to the stream (Oloya and Logan, 1980). The quantity of ortho-P de-
sorbed was correlated with the soil test P concentration (Westermann et al., 1999).
Once it enters the furrow stream, a fraction of the dissolved ortho-P and NH 4-N
may adsorb to sediment present in the flow. The dissolved ions eventually reach
an equilibrium concentration in the runoff (Logan, 1982). During an irrigation,
erosional processes such as channel abrasion, sidewall collapse, and migrating
headcuts expose fresh soil surfaces to the stream flow. This soil contributes addi-
tional nutrients to the flow.

Polyacrylamide Technology in Furrow Irrigation

Furrow irrigation polyacrylamide (PAM) technology was developed as a
solution to high erosion rates associated with this irrigation practice on coarse and
medium textured soils (Lentz et al., 1992). Early irrigation studies with PAM fo-
cused on its sediment loss and infiltration effects. Experiments on a number of
different soils with varying furrow slopes and lengths in southern Idaho demon-
strated that the standard PAM application reduces soil loss from furrows by an
average of 94% and increases net infiltration into newly formed furrows by 15%
(Lentz and Sojka, 1994). The standard method applies an optimal 10 mg PAM
L-' water (10 ppm) to irrigation inflows only during the furrow advance stage,
i.e. when the water stream first advances down the furrow, and before runoff be-
gins (Lentz et al., 1992). After the furrow advance, PAM application is curtailed



POLYACRYLAMIDE FOR SURFACE IRRIGATION	 1207

and untreated inflows are used for the remainder of the irrigation set. Polyacryla-
mide dissolved in the inflow water is adsorbed and irreversibly bound to soil par-
ticle and aggregate surfaces in the furrow wetted perimeter (Mitchell, 1986; Malik
and Letey, 1991; Lentz et al., 1992; Letey, 1994).

The PAM commonly used is a water soluble, linear anionic polyacrylamide
copolymer (Barvenik, 1994) which was found to be most effective for furrow
erosion control (Lentz and Sojka, 2000a). The PAM has a molecular weight of
12-15 Mg mol - 1 and charge-density of 8-35% . This material has demonstrated
a remarkable ability to stabilize dry soil aggregates under rapid inundation and
flow shear, flocculate fine soil particles suspended in flows, and coarsen aggregate
size characteristics in the furrow system. These PAM-induced impacts result in
reduced furrow erosion and increased infiltration (Terry and Nelson, 1986; Lentz,
1995; Sojka et al., 1998b). Barvenik (1994) concluded that anionic PAM appli-
cations in irrigation furrows posed little threat to organisms or the environment.

A detailed description of PAM field application and general technical and
practical guidelines have been discussed elsewhere (Lentz, 1995; Lentz et al.,
1995; Sojka and Lentz, 1997). Research has investigated field efficacies of differ-
ent PAM application rates (Lentz and Sojka, 1994) and strategies (Lentz and
Sojka, 2000b). Lentz et al. (2000a) studied the effects of polymer molecular
weight, charge type and density characteristics on field erosion and infiltration
results. Other studies have focused on PAM's impacts on furrow infiltration (Trout
et al., 1995; Sojka et al., 1998a,b), multiple treated irrigations (Sojka et al.,
1998b), and surge irrigation applications (Yonts et al., 1998).

Two field studies were conducted to test the hypothesis that a PAM-based
furrow irrigation management approach could reduce sediment, soil organic mat-
ter (estimated by COD), and nutrient losses from soils in furrow irrigated fields
without increasing leaching losses of soluble nutrients. The PAM irrigation man-
agement strategy can take advantage of PAM's erosion control capabilities, i.e.
higher initial inflows can be turned into PAM-treated furrows than to untreated
furrows. One study examined the effect of PAM treatment on soil and nutrient
field losses. Another study determined PAM management effects on field leaching
losses relative to conventional furrow irrigation.

MATERIALS AND METHODS

Field studies were conducted at the USDA-ARS Northwest Irrigation and
Soils Research Laboratory at Kimberly, Idaho, USA. Dry bean (Phaseolus vul-
garis L. 'Viva Pink') or silage corn (Zea mays L.) was planted on Portneuf silt
loam (coarse-silty, mixed superactive, mesic Durinodic Xeric Haplocalcids). The
seedbed was prepared with disk and roller harrow. Surface soil texture was silt
loam (10% clay, 70% silt), organic matter was 10-13 g kg-', cation exchange
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capacity was 190 mmolc kg - 1 , saturated-paste-extract electrical conductivity (EC)
was 0.7 dS m- 1 , ESP was 1.5, pH was 7.7, and calcium carbonate equivalent was
5%. Furrows were approximately 175 m long, with a 1.6% slope. Furrows were
shaped with a weighted wedge-shaped forming tool. To avoid infiltration differ-
ences between wheel-tracked and nonwheel-tracked furrows, only trafficked fur-
rows were irrigated and monitored.

Irrigation water diverted from the Snake River contained 0.10 mg L- 1 total
P; 0.03 mg L- 1 molybdate reactive P; 11.8 mg L- 1 COD, and <0.02 mg L- 1
NO3-N, and had an EC of 0.5 dS m- 1 and SAR of 0.5. A gated pipe conveyed
water to the each furrow and adjustable spigots controlled inflow rates. Plots were
irrigated five times during each irrigation season. Furrow inflows and outflows
were monitored, and runoff sediment concentrations were measured throughout
each irrigation. Measurements were made at one-half hour intervals early in the
irrigation, and every hour or every several hours in the latter half of the irrigation
after outflows and sediment loads had stabilized. Inflows were measured by filling
a known volume per unit time, and outflows were measured with v-notch flumes
(Trout and Mackey, 1988). Sediment was measured using Imhoff cones (Sojka
et al., 1992). Details of the flow and sediment monitoring procedure were given
by Lentz et al. (1992). The experimental design was a complete randomized block,
with three replications. Furrow runoff, component loads, and infiltration were
computed with the computer program, WASHOUT (Lentz and Sojka, 1995). Net
infiltration was calculated as the difference between total inflow and total outflow.

The water soluble, anionic PAM copolymer employed had a molecular
weight of 12-15 Mg mo1- 1 and charge-density of 18%. Granular PAM was used
to prepare a 1200 or 2400 mg L- 1 (1200 or 2400 ppm) aqueous stock solution.
Stock solutions were prepared by slowly sprinkling (over a 20 –30 min period)
PAM into tap water that was vigorously and continuously agitated with a rotating
bladed stirrer. Positive displacement pumps injected the stock solution into the
inflow end of PAM-treated furrow streams at an appropriate rate to meet the PAM
concentration target.

Runoff Nutrient Loss Study

This study compared irrigation furrow inflow and outflow rates, and runoff
nutrient concentrations and losses from a control and two PAM treatments. Con-
trol furrow streams contained no PAM. Polyacrylamide was applied continuously
at 1 mg L-' in a continuous PAM 1-ppm treatment (Cont PAM1). In the Standard
PAM-10 treatment (Std PAM10), PAM was applied at 10 mg L- 1 only during the
advance phase. Polyacrylamide injection in the Std PAM-10 was curtailed at an
average 111 min after the irrigation began, ie. shortly after the end of the advance
phase, and untreated water was used for the remainder of the irrigation set. A
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cutback irrigation strategy was used for all treatments. Initial irrigation inflows
were set to 23 L min-' to move water across the field quickly, then flows were
manually cut back to 15 L min - 1 to reduce runoff. Irrigations were 8 to 24 hours
in duration.

Irrigation inflows and three irrigation runoff samples from each furrow were
collected for nutrient analysis. Runoff samples were taken from outflow monitor-
ing flumes. Runoff nutrient content was not determined for the last irrigation of
the season. Since 97% of the field's sediment losses occurred in the first four
irrigations, we believed nutrient losses produced by the final irrigation were also
very small. The first runoff sample was collected after all PAM furrows had com-
pleted their advance but before PAM application was stopped. The second was
taken 0.5 h after PAM application had ceased, and the third was taken 4.5 h later.
Thus, sampling times differed with each irrigation, but all were collected during
the periods:1 to 3.5 h; 4.5 to 7 h; and 7.5 to 10 h into the irrigation. Runoff samples
were stored at 2°C. for <8 days before being analyzed. Unfiltered samples were
analyzed for total P (Greenberg et al., 1992), molybdate-reactive-P or MRP (Wa-
tanabe and Olsen, 1965), and chemical oxygen demand, COD (American Public
Health Association et al., 1971). Nitrate-N was determined on filtered samples
(Whatman 42 filter, 2.0 mM potassium benzoate eluent and liquid ion chro-
matography).

Irrigation treatment comparisons and duration graphs were based on a 12-h
irrigation length. WASHOUT (Lentz and Sojka, 1995) computed runoff and pol-
lutant loads using outflow and sediment records (12 measurements per irrigation)
and runoff nutrient concentrations (3 per irrigation). Runoff nutrient loads were
computed under assumption that runoff component concentrations were constant
between sampling intervals. The 12-h values for the first irrigation (an 8-h irriga-
tion) were computed assuming that no change in flow and constituent concen-
trations occurred after 8 h. Previous experience indicated that this was a valid
premise. Duration graph values are means from the four monitored irrigations.
Confidence limits (P = 0.05) for duration treatment means were based on the
Student's t distribution (Snedecor and Cochran, 1980).

Field Leaching Study

Soil water percolating below 120 cm depth was monitored during the irri-
gation season for conventional vs PAM-managed irrigation furrows. Conven-
tional furrows were irrigated with 15 L min-' untreated inflows for the entire
irrigation. Polyacrylamide furrows were irrigated with 10 mg L- 1 PAM-treated
inflows at 45 L min- 1 during the furrow advance phase, then PAM injection
ceased and inflows were reduced to 15 L min- 1 for the remainder of the irrigation.
Twelve monitoring sites were installed, four in each of three blocks, at both the
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upper and lower portion of the plot (30 and 150 m along 180-m-long furrows).
Soil water percolation losses were measured throughout the irrigation season.
Length of irrigation sets were the same for both treatments in the abbreviated 1996
irrigation season. However, in 1997 and 1998, irrigation set times were varied
between treatments, to ensure that average net infiltration for both treatments was
equal for any given irrigation.

We installed 36 vacuum extraction soil water percolation samplers, three at
each monitored site (Lentz et al., 1998a). Instruments were installed in the vertical
face of a backhoe trench dug beside the monitored furrow. The vacuum extraction
system designed for this experiment was discussed in detail by Lentz et al. (1998a)
and Kincaid and Lentz (1999). A field deployed precision vacuum pump and tank
were connected via a gas dryer to a polyethylene tube main line that ran the length
of the field. Branch lines off the mainline supplied upper and lower field positions
via manifolds at each site. Each manifold supplied 1-L vacuum flasks connected
to individual samplers. In 1997, a Bourdon-tube pressure switch and Hg U-tube
manometer regulated system vacuum in main and branch lines. For 1998, we de-
signed an electronic vacuum controller and data logger program that set extraction
vacuum independently for each site according to local soil water conditions. The
line extractor-soil suction ratio was 1.4 to 1.5 (Lentz et al., 1998a).

Instrument installation was completed by late August, 1996. Prior to irri-
gation in 1996, CaC12 (112 kg ha-') was applied to the surface of fallow plots as
a drainage marker. Two irrigations were monitored during September 1996. In
1997, 168 kg ha- 1 urea was applied and plots were planted to a short-season corn.
Five irrigations were monitored beginning 16 July. Water sample volumes were
measured and collected every 1-2 days, treated with boric acid to curtail biologic
activity, and stored at 2°C. for later chemical analysis. Sample NO 3-N, and Cl
were determined with standard flow injection analysis (HA) procedures. The
mean constituent percolation and mass loss measurements at each site were
summed over the season and an ANOVA with Tukey test (SAS Institute Inc.,
1988) was employed to compute treatment mean separations (P = 0.05). Field
wide losses were computed as the mean of upper and lower field values.

RESULTS AND DISCUSSION

Runoff Nutrient Losses

Irrigation duration data showed significant differences between control and
PAM-treated furrows with regard to hydraulic properties, runoff pollutant concen-
trations, and loading. Runoff rates did not differ between treatments during
the first hour of the runoff period (Fig. 1). In the second hour, treatment runoff
rates diverged, with control furrows having significantly higher runoff rates than
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Figure 1. Infiltration and runoff (on left), and sediment concentrations and losses (on
right) per furrow. Treatments included a control, 10 mg L- 1 PAM applied during advance
only (Std PAM10), and PAM applied continuously at I mg L- 1 (Cont PAM1). Similar
letters indicate nonsignificant differences (P = 0.05) between treatment values.
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PAM-treated furrows (Fig. 1). Infiltration rates followed runoff in a similar but
reversed pattern. No significant differences between treatments were indicated for
runoff and infiltration after furrow streams flowed for 6 h, though the mean treat-
ment values from later in the irrigation were only slightly different from the 6-h
values. Thus PAM's infiltration effects continued but became less consistent with
time. This suggested that the PAM-stabilized soil structure in the furrow surface
may have begun to break down over time, and/or that the depositional seal formed
under PAM may have begun to clog late in the irrigation set, reducing seal per-
meability (Sojka et al., 1998a).

During the irrigations, sediment concentration and mass losses for control
furrows were 4 to 100X greater than those for Std PAM10 furrows, and 2.5 to
10 X greater than that of Cont PAM1 furrows (Fig. 1). Mean 12-h cumulative
sediment loss for controls was 10X greater than that of Std PAM10 and 7X
greater than that of Cont PAM 1 furrows. The 12-h cumulative sediment loss per
control furrow was 11.86 kg vs 1.15 kg for Std PAM I 0 furrows, i.e. 609 kg ha-'
vs 59 kg ha-'.

Changes in runoff concentration and mass loss for control and PAM treat-
ments followed a similar pattern for all components except NO3-N. Concentration
and mass loss values for nutrients (except NO 3-N) paralleled that for sediment
(Figs. 1, 2 and 3). At any given time during the irrigation, runoff concentrations
and mass losses of these components were about 4 to 10X greater in control fur-
rows than in Std PAM 10 and Cont PAM 1 furrows. The exception to this pattern
came for Cont PAM1 furrows during the first 7 h of each irrigation. During that
period, control values were 1.2 to 3 X that of Cont PAM ] furrows, and the differ-
ences between control and Cont PAM 1 values, in most cases, were not significant.
The similarity in duration patterns suggests that COD, MRP, and total P compo-
nents were closely associated with sediment.

Mean 12-h cumulative losses of MRP, total P, and COD were significantly
greater for controls than either PAM treatment. Cumulative mass losses of con-
trols were 7 to 14X the Std PAM10, and 3 to 6X the Cont PAM1 values (Figs. 1,
2 and 3). Thus, compared to controls, Std PAM10 reduced 12-h cumulative mass
losses of sediment by 90%, COD by 85%, MRP by 87%, and total P by 92%.
These values were similar to those reported for 24-h irrigations (Lentz et al.,
1998b).

No significant differences between control and PAM treatments were ob-
served for duration runoff NO 3-N concentration, mass losses, or cumulative losses
(Fig. 2). The peak in NO3-N concentrations observed at mid-irrigation resulted
from an anomalously high value in a single furrow, and hence was not statistically
significant. Runoff NO3-N concentrations during the irrigation were unrelated to
that of sediment. In contrast, runoff COD, MRP, and total P concentrations ap-
peared to be dependent on runoff sediment. A correlation analysis of the runoff
sediment vs nutrient concentration data confirmed these observations (Lentz et al.,
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1998b). Note that runoff MRP concentrations responded slightly differently to
sediment concentration depending on treatment. In control furrows, MRP concen-
trations decreased only slightly during the irrigation even though sediment con-
centrations had decreased by one half (Figs. 1 and 3). The change in PAM-furrow
MRP relative to sediment concentrations was more proportionate. Control furrows
carried more than twice as much sediment as PAM furrows. Hence, the relatively
larger P enrichment ratios present in PAM furrow streams probably heightened
the impact of sediment on runoff MRP, compared to control furrows.

The Std PAM 10 treatment reduced runoff losses of P, and COD (organic
materials) by 80 to 90%, compared to untreated furrows. Polyacrylamide-induced
reductions in runoff MRP and total P concentrations and mass loss reported here
were similar to those observed for a southern Idaho demonstration project (Bahr
and Stieber, 1996), which found that PAM reduced total N lost in runoff by 69
to 95%.

Field Leaching

Presented here is a preliminary analysis of a field-data set that included one
partial irrigation season and two full irrigation seasons (Table 1). These data in-
dicated no significant differences in cumulative field-wide deep percolation or
NO3-N and chloride mass losses between conventional and PAM-managed irri-
gation furrows. Not even in 1996, when mean net infiltration of PAM furrows was
permitted to exceed that of controls, did we observe significant treatment effects.
Cumulative NO 3-N percolation losses increased in 1997 relative to 1996 in re-
sponse to the spring, 1997, urea application. Deep percolation at lower field po-
sitions was 9% of that at upper positions (data not shown).

CONCLUSIONS

The Std PAM 10 treatment applied 10 mg L- 1 anionic PAM to inflows as the
furrow stream first advanced across the field. Once runoff began, untreated inflows
were used to finish the irrigation. Relative to controls, PAM reduced total 12-h
runoff losses of sediment by 90%, organic matter losses as estimated by chemical
oxygen demand by 85%, total P by 92%, and MRP by 87%. Polyacrylamide ac-
complished these reductions mainly by lowering component concentrations
in runoff water, but also by decreasing furrow runoff volume (i.e. increasing infil-
tration), especially early in the irrigation. Polyacrylamide's tendency to increase
net furrow infiltration, had raised some concerns that it would increase down-
ward translocation of soil water and nutrients. However, a subsequent percolation
study showed that PAM-managed furrow irrigation did not result in an increase in



Water
Applied Infiltration
(mm)	 (mm)

Year
(# Irrs.)	 Treatment

Runoff	 Soil Water	 Nitrate-N	 Chloride
(mm)	 (mm)	 (kg ha- ')	 (kg ha- 1 )

Table 1. Cumulative Seasonal Irrigation Applications and Percolation Losses

Irrigation
Percolation Losses

1996t Control 162 65 97 47.5at 5a 26a
(2) PAM 171 75 96 99a 11a 27a
1997 Control 305 182 123 166a 121a 154a

(5) PAM 325 185 140 164a 132a 160a
1998 Control 494 233 261 138a 118a 146a

(5) PAM 494 244 250 133a 83a 88a

t In 1996, irrigation set times were the same for both treatments. Hence, the PAM-induce infiltration in-
crease was more evident than for years 1997-98. In later years, irrigation length was adjusted to give iden-
tical net infiltration for both treatments.
t Similar lower-case letters indicate nonsignificant differences between treatments (P = 0.05) for a given
year.
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field-wide percolation losses of water or soluble nutrients such as NO 3-N. Polya-
crylamide provides an opportunity for increasing irrigation uniformity by increas-
ing initial furrow inflows (without attendant erosion increases). This option is not
always available for other infiltration-enhancing practices, such as straw-mulch-
ing. Increasing inflows in straw-mulched furrows can result in the washing out of
straw and formation of straw and sediment dams in furrows; with the latter caus-
ing flooding (Berg, 1984). Polyacrylamide-managed furrow irrigation in some
Idaho soils can help increase crop nutrient-use efficiency by preventing field nu-
trient losses, and simultaneously protect surface water quality by reducing N, P,
and organic matter concentrations in furrow runoff and return flows.
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